References

References#

[ADJ21]

M. A. Ambroise, A. Dreuw, and F. Jensen. Probing basis set requirements for calculating core ionization and core excitation spectra using correlated wave function methods. J. Chem. Theory Comput., 17:2832, 2021. URL: https://doi.org/10.1021/acs.jctc.1c00042.

[BS71]

P. S. Bagus and H. F. Schaefer. Direct near-Hartree–Fock calculations of the 1s hole states of NO+. J. Chem. Phys., 55:1474, 1971. URL: https://doi.org/10.1063/1.1676248.

[Bak86]

J. Baker. An algorithm for the location of transition states. J. Comput. Chem., 7:385–395, 1986. URL: https://doi.org/10.1002/jcc.540070402.

[Bar04]

Laurence D. Barron. Molecular Light Scattering and Optical Activity. Cambridge University Press, 2004. URL: https://doi.org/10.1017/CBO9780511535468.

[BCCK93]

C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J. Phys. Chem., 97:10269–10280, 1993. URL: https://pubs.acs.org/doi/abs/10.1021/j100142a004.

[Bec88]

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988. URL: https://doi.org/10.1103/PhysRevA.38.3098.

[Bec93]

A. D. Becke. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98:5648–5652, 1993. URL: https://doi.org/10.1063/1.464913.

[BYY17]

U. Bergmann, V. K. Yachandra, and J. Yano. X-Ray Free Electron Lasers: Applications in Materials, Chemistry, and Biology. The Royal Society of Chemistry, 2017. ISBN 978-1-84973-100-3. URL: https://doi.org/10.1039/9781782624097.

[BMK90]

B. H. Besler, K. M. Merz, and P. A. Kollman. Atomic charges derived from semiempirical methods. J. Comput. Chem., 11:431–439, 1990. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540110404.

[Bes12]

N. A. Besley. Equation of motion coupled cluster theory calculations of the x-ray emission spectroscopy of water. Chem. Phys. Lett., 542:42–46, 2012. URL: https://doi.org/10.1016/j.cplett.2012.05.059.

[Bes21]

N. A. Besley. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci, 2021. URL: https://doi.org/10.1002/wcms.1527.

[BA10]

N. A. Besley and F. A. Asmuruf. Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys. Chem. Chem. Phys., 12:12024–12039, 2010. URL: https://doi.org/10.1039/C002207A.

[BW90]

Curt M. Breneman and Kenneth B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J. Comput. Chem., 11:361–373, 1990. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540110311.

[Buc67]

A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys., 12:107, 1967. URL: https://doi.org/10.1002/9780470143582.ch2.

[CEH+19]

E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys., 150:154122, 2019. URL: https://doi.org/10.1063/1.5090222.

[CDS80]

L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22:206, 1980. URL: https://doi.org/10.1103/PhysRevA.22.206.

[Cen15]

A. Centrone. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem., 8:101–126, 2015. URL: https://doi.org/10.1146/annurev-anchem-071114-040435.

[CCBK95]

P. Cieplak, W. D. Cornell, C. Bayly, and P. A. Kollman. Application of the multimolecule and multiconformational resp methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J. Comput. Chem., 16:1357–1377, 1995. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540161106.

[CMSY12]

A. J. Cohen, P. Mori-Sánchez, and W. Yang. Challenges for density functional theory. Chem. Rev., 112:289–320, 2012. URL: https://doi.org/10.1021/cr200107z.

[DFA02]

P. Deglmann, F. Furche, and R. Ahlrichs. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett., 362:511–518, 2002. URL: https://doi.org/10.1016/S0009-2614(02)01084-9.

[Dir30]

P. A. M. Dirac. Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc, 26:376–385, 1930. URL: https://doi.org/10.1017/S0305004100016108.

[DHG05]

A. Dreuw and M. Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev., 105:4009–4037, 2005. URL: https://doi.org/10.1021/cr0505627.

[DW15]

A. Dreuw and M. Wormit. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci., 5:82–95, 2015. URL: https://doi.org/10.1002/wcms.1206.

[Eck35]

C. Eckart. Some studies concerning rotating axes and polyatomic molecules. Phys. Rev., 47:552–558, 1935. URL: https://link.aps.org/doi/10.1103/PhysRev.47.552.

[EkstromNCAAgren06]

U. Ekström, P. Norman, V. Carravetta, and H. Ågren. Polarization propagator for x-ray spectra. Phys. Rev. Lett., 2006. URL: 10.1103/PhysRevLett.97.143001.

[ES99]

M. Ernzerhof and G. E. Scuseria. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys., 110:5029–5036, 1999. URL: https://doi.org/10.1063/1.478401.

[FHGP92]

J. B. Foresman, M. Head-Gordon, and J. A. Pople. Toward a systematic molecular orbital theory for excited states. J. Phys. Chem., 96:135–149, 1992. URL: https://doi.org/10.1021/j100180a030.

[FPB18]

A. E. A. Fouda, G. I. Purnell, and N. A. Besley. Simulation of ultra-fast dynamics effects in resonant inelastic x-ray scattering of gas-phase water. J. Chem. Theory Comput., 14:2586–2595, 2018. URL: https://doi.org/10.1021/acs.jctc.8b00211.

[FBV+21]

T. Fransson, I. E. Brumboiu, M. L. Vidal, P. Norman, S. Coriani, and A. Dreuw. XABOOM: an x-ray absorption benchmark of organic molecules based on carbon, nitrogen, and oxygen 1s->pi* transitions. J. Chem. Theory Comput., 17:1618, 2021. URL: https://doi.org/10.1021/acs.jctc.0c01082.

[FBN16]

T. Fransson, D. Burdakova, and P. Norman. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. Phys. Chem. Chem. Phys., 18:13591–13603, 2016. URL: https://doi.org/10.1039/C6CP00561F.

[FD19]

T. Fransson and A. Dreuw. Simulating x-ray emission spectroscopy with algebraic diagrammatic construction schemes for the polarization propagator. J. Chem. Theory Comput., 15:546–556, 2019. URL: https://doi.org/10.1021/acs.jctc.8b01046.

[FBR14]

Daniel Friese, Maarten Beerepoot, and Kenneth Ruud. Rotational averaging of multiphoton absorption cross sections. J. Chem. Phys., 141:204103, 2014. URL: https://doi.org/10.1063/1.4901563.

[FA02]

F. Furche and R. Ahlrichs. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 117:7433–7447, 2002. URL: https://doi.org/10.1063/1.1508368.

[Gorling93]

A. Görling. Symmetry in density-functional theory. Phys. Rev. A, 47:2783–2799, 1993. URL: https://link.aps.org/doi/10.1103/PhysRevA.47.2783.

[GLKarlstrom04]

L. Gagliardi, R. Lindh, and G. Karlström. Local properties of quantum chemical systems: the LoProp approach. J. Chem. Phys., 121:4494–4500, 2004. URL: https://doi.org/10.1063/1.1778131.

[GBG08]

A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A, 112:13164–13171, 2008. URL: https://doi.org/10.1021/jp801738f.

[GAEK10]

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132:154104, 2010. URL: https://doi.org/10.1063/1.5090222.

[Gut19]

J. Guthmuller. Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods, chapter 17, pages 497–536. John Wiley and Sons, Ltd, 2019. URL: https://doi.org/10.1002/9783527814596.ch17.

[HHGB18]

M. W. D. Hanson-Heine, M. W. George, and N. A. Besley. Basis sets for the calculation of core-electron binding energies. Chem. Phys. Lett., 699:279–285, 2018. URL: https://doi.org/10.1016/j.cplett.2018.03.066.

[Hat06]

C. Hattig. Beyond Hartree–Fock: MP2 and coupled-cluster methods for large systems. Comput. Nanosci., 31:245–278, 2006. URL: https://juser.fz-juelich.de/record/152600/files/FZJ-2014-02217.pdf.

[HGGMW95]

M. Head-Gordon, A. M. Grana, D. Maurice, and C. A. White. Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Phys. Chem., 99:14261, 1995. URL: https://doi.org/10.1021/j100039a012.

[HJ88]

T. Helgaker and P. Jørgensen. Analytical calculation of geometrical derivatives in molecular electronic structure theory. Adv. Quantum Chem., 19:183–245, 1988. URL: https://doi.org/10.1016/S0065-3276(08)60616-4.

[HJO14]

T. Helgaker, P. Jørgensen, and J. Olsen. Molecular electronic-structure theory. John Wiley & Sons, 2014. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119019572.

[HF20]

M. F. Herbst and T. Fransson. Quantifying the error of the core-valence separation approximation. J. Chem. Phys., 153:054114, 2020. URL: https://doi.org/10.1063/5.0013538.

[HVDO69]

F. Herman, J. P. Van Dyke, and I. B. Ortenburger. Improved statistical exchange approximation for inhomogeneous many-electron systems. Phys. Rev. Lett., 22:807–811, 1969. URL: https://doi.org/10.1103/PhysRevLett.22.807.

[HHG99]

S. Hirata and M. Head-Gordon. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314:291–299, 1999. URL: https://doi.org/10.1016/S0009-2614(99)01149-5.

[HDSD22]

M. Hodecker, A. L. Dempwolff, J. Schirmer, and A. Dreuw. Theoretical analysis and comparison of unitary coupled-cluster and algebraic-diagrammatic construction methods for ionization. J. Chem. Phys., 156:074104, 2022. URL: 10.1063/5.0070967.

[HRDH19]

M. Hodecker, D. R. Rehn, A. Dreuw, and S. Höfener. Similarities and differences of the lagrange formalism and the intermediate state representation in the treatment of molecular properties. J. Chem. Phys., 150:164125, 2019. URL: https://aip.scitation.org/doi/pdf/10.1063/1.5093606.

[HK64]

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, 1964. URL: https://doi.org/10.1103/PhysRev.136.B864.

[HLUMartinez15]

E. G. Hohenstein, N. Luehr, I. S. Ufimtsev, and T. J. Martínez. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys., 142:224103, 2015. URL: https://doi.org/10.1063/1.4921956.

[Jen06]

F. Jensen. Introduction to computational chemistry. John Wiley & Sons Ltd., second edition, 2006.

[KKG+15]

M. Kadek, L. Konecny, B. Gao, M. Repisky, and K. Ruud. X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac–Kohn–Sham density matrix. Phys. Chem. Chem. Phys., 17:22566–22570, 2015. URL: https://doi.org/10.1039/C5CP03712C.

[Kie72]

S. Kielich. General molecular theory and electric field effects in isotopic dielectrics. In M. Davies, editor, Specialist Periodical Report, Dielectric and Related Molecular Processes, volume 1, pages 192. Chem. Soc., London, 1972.

[KR16]

C. W. Kim and Y. M. Rhee. Constructing an interpolated potential energy surface of a large molecule: a case study with bacteriochlorophyll a model in the Fenna–Matthews–Olson complex. J. Chem. Theory Comput., 12:5235–5246, 2016. URL: https://doi.org/10.1021/acs.jctc.6b00647.

[KSK+67]

H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr. Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics. J. Chem. Phys., 47:1936, 1967. URL: https://doi.org/10.1063/1.1712221.

[KOJ95]

S. Kirpekar, J. Oddershede, and H. J. Aa. Jensen. Relativistic corrections to molecular dynamic dipole polarizabilities. J. Chem. Phys., 103:2983, 1995. URL: https://doi.org/10.1063/1.470486.

[KS65]

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, 1965. URL: https://link.aps.org/doi/10.1103/PhysRev.140.A1133.

[KLP+16]

J. K. Kowalska, F. A. Lima, C. J. Pollock, J. A. Rees, and S. DeBeer. A practical guide to high-resolution x-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem., 56:803–815, 2016. URL: https://doi.org/10.1002/ijch.201600037.

[LYP88]

C. Lee, W. Yang, and R. G. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, 1988. URL: https://doi.org/10.1103/PhysRevB.37.785.

[Lev05]

S. V. Levchenko. Equation-of-motion coupled-cluster model with single and double substitutions: Theory and applications. PhD thesis, University of Southern California, 2005.

[LWK05]

S. V. Levchenko, T. Wang, and A. I. Krylov. Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions. J. Chem. Phys., 122:224106, 2005. URL: https://doi.org/10.1063/1.1877072.

[Lev79]

M. Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A., 76:6062–6065, 1979. URL: https://doi.org/10.1073/pnas.76.12.606.

[LPL+17]

X. Li, R. M. Parrish, F. Liu, S. I. L. Kokkila Schumacher, and T. J. Martínez. An ab initio exciton model including charge-transfer excited states. J. Chem. Theory Comput., 13:3493–3504, 2017. URL: https://doi.org/10.1021/acs.jctc.7b00171.

[LvKKG12]

K. Lopata, B. E. van Kuiken, M. Khalil, and N. Govind. Linear-response and real-time time-dependent density functional theory studies of core-level near-edge X-ray absorption. J. Chem. Theory Comput., 8:3284–3292, 2012. URL: https://doi.org/10.1021/ct3005613.

[LS61]

P. G. Lykos and H. N. Schmeising. Maximum overlap atomic and molecular orbitals. J. Phys. Chem., 35:288, 1961. URL: https://doi.org/10.1063/1.1731901.

[Low80]

P.-O. Löwdin. Molecular structure calculations. Adv. Quantum Chem., 12:263–316, 1980. URL: https://doi.org/10.1016/S0065-3276(08)60318-4.

[Mar03]

Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118(11):4775–4777, 2003. URL: https://doi.org/10.1063/1.1558471.

[Mat92]

R. D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. Courier Corporation, 1992.

[MS96]

F. Mertins and J. Schirmer. Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods. Phys. Rev. A, 53:2140–2152, 1996. URL: https://doi.org/10.1103/PhysRevA.53.2140.

[Nee09]

F. Neese. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev., 253:526–563, 2009. URL: https://doi.org/10.1016/j.ccr.2008.05.014.

[Neal09]

F. Neese et al. Orca. An Ab Initio, DFT and Semiempirical electronic structure package, 2009.

[NBJO01]

P. Norman, D. M. Bishop, H. J. Aa. Jensen, and J. Oddershede. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J. Chem. Phys., 115:10323–10334, 2001. URL: https://doi.org/10.1063/1.1415081.

[ND18]

P. Norman and A. Dreuw. Simulating x-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev., 118:7208–7248, 2018. URL: https://doi.org/10.1021/acs.chemrev.8b00156.

[NRS18]

P. Norman, K. Ruud, and T. Saue. Principles and practices of molecular properties. John Wiley & Sons, Ltd, 2018.

[NL14]

Patrick Norman and Mathieu Linares. On the interplay between chirality and exciton coupling: A DFT calculation of the circular dichroism in π-stacked ethylene. Chirality, 26:483–489, 2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/chir.22331.

[PMK21]

A. C. Paul, Myhre, R. H, and H. Koch. A new and efficient implementation of CC3. J. Chem. Theory Comput., 12:117, 2021. URL: https://doi.org/10.1021/acs.jctc.0c00686.

[PBapplerWD14]

F. Plasser, S. A. Bäppler, M. Wormit, and A. Dreuw. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys., 141:024107, 2014. URL: https://doi.org/10.1063/1.4885820.

[PWD14]

F. Plasser, M. Wormit, and A. Dreuw. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys., 141:024106, 2014. URL: https://doi.org/10.1063/1.4885819.

[PKSB79]

J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. Derivative studies in Hartree–Fock and Møller–Plesset theories. Int. J. Quantum Chem., 16:225–241, 1979. URL: https://doi.org/10.1002/qua.560160825.

[Pul80]

P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 73:393–398, 1980. URL: https://doi.org/10.1016/0009-2614(80)80396-4.

[Pul82]

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3:556–560, 1982. URL: https://doi.org/10.1002/jcc.540030413.

[PF92]

P. Pulay and G. Fogarasi. Geometry optimization in redundant internal coordinates. J. Chem. Phys., 96:2856–2860, 1992. URL: https://doi.org/10.1063/1.462844.

[RF07]

D. Rappoport and F. Furche. Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory. J. Chem. Phys., 126:201104, 2007. URL: https://doi.org/10.1063/1.2744026.

[Reh15]

D. R. Rehn. Development of quantum chemical methods for excited-state and response properties. PhD thesis, Heidelberg University, 2015.

[RD19]

D. R. Rehn and A. Dreuw. Analytic nuclear gradients of the algebraic-diagrammatic construction scheme for the polarization propagator up to third order of perturbation theory. J. Chem. Phys., 150(17):174110, 2019. URL: https://doi.org/10.1063/1.5085117.

[RRH+21]

D. R. Rehn, Z. Rinkevicius, M. Herbst, M. Li, X. Scheurer, M. Brand, A. L. Dempwolff, I. E. Brumboiu, T. Fransson, A. Dreuw, and P. Norman. Gator: a Python-driven program for spectroscopy simulations using correlated wave functions. WIREs Comput. Mol. Sci., 2021. URL: https://doi.org/10.1002/wcms.1528.

[RP16]

Y. M. Rhee and J. W. Park. Interpolation for molecular dynamics simulations: from ions in gas phase to proteins in solution. Int. J. Quant. Chem., 116:573–577, 2016. URL: https://doi.org/10.1002/qua.25064.

[RLV+20]

Z. Rinkevicius, X. Li, O. Vahtras, K. Ahmadzadeh, M. Brand, M. Ringholm, N. H. List, M. Scheurer, M. Scott, A. Dreuw, and P. Norman. VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments. WIREs Comput. Mol. Sci., 10:e1457, 2020. URL: https://doi.org/10.1002/wcms.1457.

[Sch82]

J. Schirmer. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A, 26:2395–2416, 1982. URL: https://doi.org/10.1103/PhysRevA.26.2395.

[Sch91]

J. Schirmer. Closed-form intermediate representations of many-body propagators and resolvent matrices. Phys. Rev. A, 43:4647–4659, 1991. URL: https://doi.org/10.1103/PhysRevA.43.4647.

[SM10]

J. Schirmer and F. Mertins. Review of biorthogonal coupled cluster representations for electronic excitation. Theor. Chem. Acc., 125:145–172, 2010. URL: https://link.springer.com/article/10.1007/s00214-009-0597-x.

[ST04]

J. Schirmer and A.B. Trofimov. Intermediate state representation approach to physical properties of electronically excited molecules. J. Chem. Phys., 120:11449–11464, 2004. URL: https://doi.org/10.1063/1.1752875.

[Sel93]

Harrell Sellers. The c2-diis convergence acceleration algorithm. Int. J. Quant. Chem., 45:31–41, 1993. doi:https://doi.org/10.1002/qua.560450106.

[Sha71]

L. J. Sham. Approximations of the Exchange and Correlation Potentials, pages 458–468. Springer US, 1971. URL: https://doi.org/10.1007/978-1-4684-1890-3_36.

[SB09]

I. Shavitt and R. J. Bartlett. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9780511596834.

[SH07]

F. Siebert and P. Hildebrandt. Theory of Infrared Absorption and Raman Spectroscopy, chapter 2, pages 11–61. John Wiley and Sons, Ltd, 2007. URL: https://doi.org/10.1002/9783527621347.ch2.

[SK84]

U. Chandra Singh and Peter A. Kollman. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 5:129–145, 1984. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540050204.

[Sny05]

J. A. Snyman. Practical mathematical optimization. Springer, 2005.

[SDCF94]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 98(45):11623–11627, 1994. URL: https://doi.org/10.1021/j100096a001.

[SSF96]

E. R. Stratmann, G. E. Scuseria, and M. J. Frisch. Achieving linear scaling in exchange-correlation density functional quadratures. Chem. Phys. Lett., 257:213–223, 1996. URL: https://doi.org/10.1016/0009-2614(96)00600-8.

[Stohr92]

J. Stöhr. NEXAFS spectroscopy. Springer Science & Business Media, 1992.

[SO12]

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Courier Corporation, 2012.

[TPSS03]

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91:146401, 2003. URL: https://doi.org/10.1103/PhysRevLett.91.146401.

[TA95]

O. Treutler and R. Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102:346–354, 1995. URL: https://doi.org/10.1063/1.469408.

[vBL16]

J. A. van Bokhoven and C. Laberti. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. John Wiley & Sons, 2016. ISBN 9781118844236. URL: https://doi.org/10.1002/9781118844243.

[VFE+19]

M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, and S. Coriani. New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states. J. Chem. Theory Comput., 15:3117–3133, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00039.

[VKC19]

M. L. Vidal, A. I. Krylov, and S. Coriani. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to x-ray photoelectron spectroscopy of ground and excited states. Phys. Chem. Chem. Phys., 22:2693, 2019. URL: https://doi.org/10.1039/C9CP03695D.

[VvLvD90]

R. J. Vos, J. H. van Lenthe, and F. B. van Duijneveldt. Convergence to the configuration‐set limit in multireference configuration‐interaction calculations on the he dimer. J. Chem. Phys., 93:643–651, 1990. URL: https://doi.org/10.1063/1.459511.

[VWN80]

S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58:1200–1211, 1980. URL: https://doi.org/10.1139/p80-159.

[Wagniere82a]

Georges Wagniére. Optical activity of higher order in a medium of randomly oriented molecules. J. Chem. Phys., 77:2786, 1982. URL: https://doi.org/10.1063/1.444166.

[Wagniere82b]

Georges Wagniére. The evaluation of three-dimensional rotational averages. J. Chem. Phys., 76:473, 1982. URL: https://doi.org/10.1063/1.442747.

[WS16]

L.-P. Wang and C. Song. Geometry optimization made simple with translation and rotation coordinates. J. Chem. Phys., 144:214108, 2016. URL: https://doi.org/10.1063/1.4952956.

[WJY+17]

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, and X. He. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc. Natl. Acad. Sci. U.S.A., 114:8487–8492, 2017. URL: https://doi.org/10.1073/pnas.1705670114.

[WBM+12]

L. Weinhardt, A. Benkert, F. Meyer, M. Blum, R. G. Wilks, W. Yang, M. Bär, F. Reinert, and C. Heske. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules. J. Chem. Phys., 136:144311, 2012. URL: https://doi.org/10.1063/1.3702644.

[Wen16]

J. Wenzel. Development and Implementation of Theoretical Methods for the Description of Electronically Core-Excited States. PhD thesis, Heidelberg University, 2016.

[WHWD15]

J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys., 142:214104, 2015. URL: https://doi.org/10.1063/1.4921841.

[WDC80]

E. B. Wilson, J. C. Decius, and P. C. Cross. Molecular Vibrations. Dover, New York, 1980.

[Wor09]

M. Wormit. Development and Application of Reliable Methods for the Calculation of Excited States: From Light-Harvesting Complexes to Medium-Sized Molecules. PhD thesis, Goethe University Frankfurt, 2009.

[YTH04]

T. Yanai, D. P Tew, and N. C Handy. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 393:51–57, 2004. URL: https://doi.org/10.1016/j.cplett.2004.06.011.

[ZT11]

Y. Zhao and D. G. Truhlar. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett., 502:1–13, 2011. URL: https://doi.org/10.1016/j.cplett.2010.11.060.

[LachJS04]

G. Łach, B. Jeziorski, and K. Szalewicz. Radiative corrections to the polarizability of helium. Phys. Rev. Lett., 92:233001, 2004. URL: https://doi.org/10.1103/PhysRevLett.92.233001.