References#

ADJ21

M. A. Ambroise, A. Dreuw, and F. Jensen. Probing basis set requirements for calculating core ionization and core excitation spectra using correlated wave function methods. J. Chem. Theory Comput., 17:2832, 2021. URL: https://doi.org/10.1021/acs.jctc.1c00042.

BS71

P. S. Bagus and H. F. Schaefer. Direct near-hartree–fock calculations of the 1s hole states of NO$^+$. J. Chem. Phys., 55:1474, 1971. URL: https://doi.org/10.1063/1.1676248.

Bak86

J. Baker. An algorithm for the location of transition states. J. Comput. Chem., 7(4):385–395, 1986.

BKP99

J. Baker, D. Kinghorn, and P. Pulay. Geometry optimization in delocalized internal coordinates: an efficient quadratically scaling algorithm for large molecules. J. Chem. Phys., 110(11):4986–4991, 1999.

BCCK93

Christopher I. Bayly, Piotr Cieplak, Wendy Cornell, and Peter A. Kollman. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem., 97:10269–10280, 1993. URL: https://pubs.acs.org/doi/abs/10.1021/j100142a004.

Bec88

A D Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38(6):3098–3100, 1988.

Bec93

Axel D. Becke. Density‐functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys., 98(7):5648–5652, 1993.

BYY17

U. Bergmann, V. K. Yachandra, and J. Yano. X-Ray Free Electron Lasers: Applications in Materials, Chemistry, and Biology. The Royal Society of Chemistry, 2017. ISBN 978-1-84973-100-3. URL: https://doi.org/10.1039/9781782624097.

BMK90

Brent H. Besler, Kenneth M. Merz, and Peter A. Kollman. Atomic charges derived from semiempirical methods. J. Comput. Chem., 11:431–439, 1990. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540110404.

Bes12

N. A. Besley. Equation of motion coupled cluster theory calculations of the x-ray emission spectroscopy of water. Chem. Phys. Lett., 542:42–46, 2012. URL: https://doi.org/10.1016/j.cplett.2012.05.059.

Bes21

N. A. Besley. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci, 2021. URL: https://doi.org/10.1002/wcms.1527.

BA10

N. A. Besley and F. A. Asmuruf. Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys. Chem. Chem. Phys., 12:12024–12039, 2010. URL: https://doi.org/10.1039/C002207A.

BTT00

S. R. Billeter, A. J. Turner, and W. Thiel. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates. Phys. Chem. Chem. Phys., 2(10):2177–2186, 2000.

CEH+19

Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme. A generally applicable atomic-charge dependent london dispersion correction. J. Chem. Phys., 150(15):154122, 2019.

CDS80

L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22:206, 1980. URL: https://doi.org/10.1103/PhysRevA.22.206.

Cen15

A. Centrone. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem., 8:101–126, 2015. doi:https://doi.org/10.1146/annurev-anchem-071114-040435.

CCBK95

Piotr Cieplak, Wendy D. Cornell, Christopher Bayly, and Peter A. Kollman. Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. J. Comput. Chem., 16:1357–1377, 1995. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540161106.

CMSY12

Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. Challenges for density functional theory. Chem. Rev., 112(1):289–320, 2012. URL: https://doi.org/10.1021/cr200107z, doi:10.1021/cr200107z.

DFA02

Peter Deglmann, Filipp Furche, and Reinhart Ahlrichs. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett., 362(5-6):511–518, 2002. doi:https://doi.org/10.1016/S0009-2614(02)01084-9.

Dir30

P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Math. Proc. Camb. Philos. Soc, 26(3):376–385, 1930. doi:10.1017/S0305004100016108.

DHG05

Andreas Dreuw and Martin Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev., 105(11):4009–4037, 2005. doi:10.1021/cr0505627.

DW15

Andreas Dreuw and Michael Wormit. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci., 5(1):82–95, 2015.

Eck35

Carl Eckart. Some studies concerning rotating axes and polyatomic molecules. Phys. Rev., 47:552–558, 1935. doi:10.1103/PhysRev.47.552.

EkstromNCAAgren06

U. Ekström, P. Norman, V. Carravetta, and H. Ågren. Polarization propagator for x-ray spectra. Phys. Rev. Lett., 2006. URL: 10.1103/PhysRevLett.97.143001.

ES99

Matthias Ernzerhof and Gustavo E Scuseria. Assessment of the perdew–burke–ernzerhof exchange-correlation functional. J. Chem. Phys., 110(11):5029–5036, 1999. doi:10.1063/1.478401.

FHGP92

James B. Foresman, M. Head-Gordon, and J. A. Pople. Toward a systematic molecular orbital theory for excited states. J. Phys. Chem., 96(1):135–149, 1992. doi:10.1021/j100180a030.

FPB18

A. E. A. Fouda, G. I. Purnell, and N. A. Besley. Simulation of ultra-fast dynamics effects in resonant inelastic x-ray scattering of gas-phase water. J. Chem. Theory Comput., 14:2586–2595, 2018. URL: https://doi.org/10.1021/acs.jctc.8b00211.

FBV+21

T. Fransson, I. E. Brumboiu, M. L. Vidal, P. Norman, S. Coriani, and A. Dreuw. Xaboom: an x-ray absorption benchmark of organic molecules based on carbon, nitrogen, and oxygen $ 1s \rightarrow \pi ^\ast $ transitions. J. Chem. Theory Comput., 17:1618, 2021. URL: https://doi.org/10.1021/acs.jctc.0c01082.

FBN16

T. Fransson, D. Burdakova, and P. Norman. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. Phys. Chem. Chem. Phys., 18:13591–13603, 2016. URL: https://doi.org/10.1039/C6CP00561F.

FD19

T. Fransson and A. Dreuw. Simulating x-ray emission spectroscopy with algebraic diagrammatic construction schemes for the polarization propagator. J. Chem. Theory Comput., 15:546–556, 2019. URL: https://doi.org/10.1021/acs.jctc.8b01046.

FA02

Filipp Furche and Reinhart Ahlrichs. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 117(16):7433–7447, 2002. doi:10.1063/1.1508368.

Gorling93

Andreas Görling. Symmetry in density-functional theory. Phys. Rev. A, 47:2783–2799, Apr 1993. URL: https://link.aps.org/doi/10.1103/PhysRevA.47.2783, doi:10.1103/PhysRevA.47.2783.

GLKarlstrom04

Laura Gagliardi, Roland Lindh, and Gunnar Karlström. Local properties of quantum chemical systems: The LoProp approach. J. Chem. Phys., 121(10):4494–4500, 2004.

GBG08

A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill. Self-consistent field calculations of excited states using the maximum overlap method (mom). J. Phys. Chem. A, 112:13164–13171, 2008. URL: https://doi.org/10.1021/jp801738f.

GAEK10

Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys., 132(15):154104, 2010.

Gut19

J. Guthmuller. Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods, chapter 17, pages 497–536. John Wiley and Sons, Ltd, 2019. URL: https://doi.org/10.1002/9783527814596.ch17.

HHGB18

M. W. D. Hanson-Heine, M. W. George, and N. A. Besley. Basis sets for the calculation of core-electron binding energies. Chem. Phys. Lett., 699:279–285, 2018. URL: https://doi.org/10.1016/j.cplett.2018.03.066.

Hat06

C. Hattig. Beyond hartree-fock: mp2 and coupled-cluster methods for large systems. Comput. Nanosci., 31:245–278, 2006. URL: https://juser.fz-juelich.de/record/152600/files/FZJ-2014-02217.pdf.

HJ88

Trygve Helgaker and Poul Jørgensen. Analytical calculation of geometrical derivatives in molecular electronic structure theory. Adv. Quantum Chem., 19:183–245, 1988.

HJO14

Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular electronic-structure theory. John Wiley & Sons, 2014.

HF20

M. F. Herbst and T. Fransson. Quantifying the error of the core-valence separation approximation. J. Chem. Phys., 153:054114, 2020. URL: https://doi.org/10.1063/5.0013538.

HVDO69

Frank Herman, John P. Van Dyke, and Irene B. Ortenburger. Improved statistical exchange approximation for inhomogeneous many-electron systems. Phys. Rev. Lett., 22:807–811, Apr 1969.

HHG99

So Hirata and Martin Head-Gordon. Time-dependent density functional theory within the tamm–dancoff approximation. Chem. Phys. Lett., 314(3):291–299, 1999. URL: https://doi.org/10.1016/S0009-2614(99)01149-5.

HDSD22

Manuel Hodecker, Adrian L. Dempwolff, Jochen Schirmer, and Andreas Dreuw. Theoretical analysis and comparison of unitary coupled-cluster and algebraic-diagrammatic construction methods for ionization. J. Chem. Phys., 156(7):074104, 2022. doi:10.1063/5.0070967.

HRDH19

Manuel Hodecker, Dirk R. Rehn, Andreas Dreuw, and Sebastian Höfener. Similarities and differences of the lagrange formalism and the intermediate state representation in the treatment of molecular properties. J. Chem. Phys., 150(16):164125, 2019. doi:10.1063/1.5093606.

HK64

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, 1964. doi:10.1103/PhysRev.136.B864.

HLUMartinez15

Edward G. Hohenstein, Nathan Luehr, Ivan S. Ufimtsev, and Todd J. Martínez. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys., 142:224103, 2015. URL: https://doi.org/10.1063/1.4921956.

Jen06

Frank Jensen. Introduction to computational chemistry. John Wiley & Sons Ltd., second edition, 2006.

KKG+15

M. Kadek, L. Konecny, B. Gao, M. Repisky, and K. Ruud. X-ray absorption resonances near L$_2,3$-edges from real-time propagation of the Dirac–Kohn–Sham density matrix. Phys. Chem. Chem. Phys., 17:22566–22570, 2015. URL: https://doi.org/10.1039/C5CP03712C.

KR16

C. W. Kim and Y. M. Rhee. Constructing an interpolated potential energy surface of a large molecule: a case study with bacteriochlorophyll a model in the fenna–matthews–olson complex. J. Chem. Theory Comput., 12(11):5235–5246, 2016. URL: https://doi.org/10.1021/acs.jctc.6b00647.

KSK+67

H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr. Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics. J. Chem. Phys., 47:1936, 1967. URL: https://doi.org/10.1063/1.1712221.

KS65

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965. URL: https://link.aps.org/doi/10.1103/PhysRev.140.A1133, doi:10.1103/PhysRev.140.A1133.

KLP+16

J. K. Kowalska, F. A. Lima, C. J. Pollock, J. A. Rees, and S. DeBeer. A practical guide to high-resolution x-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem., 56:803–815, 2016. URL: https://doi.org/10.1002/ijch.201600037.

LYP88

Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, Jan 1988.

Lev05

S. V. Levchenko. Equation-of-motion coupled-cluster model with single and double substitutions: Theory and applications. PhD thesis, University of Southern California, 2005.

LWK05

S. V. Levchenko, T. Wang, and A. I. Krylov. Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions. J. Chem. Phys., 122(22):224106, 2005.

Lev79

Mel Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A., 76(12):6062–6065, 1979. doi:10.1073/pnas.76.12.6062.

LPL+17

Xin Li, Robert M. Parrish, Fang Liu, Sara I. L. Kokkila Schumacher, and Todd J. Martínez. An Ab Initio Exciton Model Including Charge-Transfer Excited States. J. Chem. Theory Comput., 13:3493–3504, 2017. URL: https://doi.org/10.1021/acs.jctc.7b00171.

LvKKG12

K. Lopata, B. E. van Kuiken, M. Khalil, and N. Govind. Linear-response and real-time time-dependent density functional theory studies of core-level near-edge X-ray absorption. J. Chem. Theory Comput., 8:3284–3292, 2012. URL: https://doi.org/10.1021/ct3005613.

LS61

P. G. Lykos and H. N. Schmeising. Maximum overlap atomic and molecular orbitals. J. Phys. Chem., 35:288, 1961. URL: https://doi.org/10.1063/1.1731901.

Low80

Per-Olov Löwdin. Molecular structure calculations. Adv. Quantum Chem., 12:263–316, 1980.

Mat92

Richard D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. Courier Corporation, 1992.

MS96

F. Mertins and J. Schirmer. Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods. Phys. Rev. A, 53(4):2140–2152, 1996. doi:10.1103/PhysRevA.53.2140.

Nee09

F. Neese. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev., 253:526–563, 2009. doi:10.1016/j.ccr.2008.05.014.

Neal09

F. Neese et al. Orca. An Ab Initio, DFT and Semiempirical electronic structure package, 2009.

NBJO01

P. Norman, D. M. Bishop, H. J. Aa. Jensen, and J. Oddershede. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J. Chem. Phys., 115:10323–10334, 2001. URL: https://doi.org/10.1063/1.1415081.

ND18

P. Norman and A. Dreuw. Simulating x-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev., 118:7208–7248, 2018. URL: https://doi.org/10.1021/acs.chemrev.8b00156.

NRS18

Patrick Norman, Kenneth Ruud, and Trond Saue. Principles and practices of molecular properties. John Wiley & Sons, Ltd, Chichester, UK, 2018.

PMK21

A. C. Paul, Myhre, R. H, and H. Koch. A new and efficient implementation of cc3. J. Chem. Theory Comput., 12:117, 2021. URL: https://doi.org/10.1021/acs.jctc.0c00686.

PKSB79

J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. Derivative studies in Hartree–Fock and Møller–Plesset theories. Int. J. Quantum Chem., 16(S13):225–241, 1979. doi:10.1002/qua.560160825.

Pul80

P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 73(2):393–398, 1980. doi:https://doi.org/10.1016/0009-2614(80)80396-4.

Pul82

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3(4):556–560, 1982. doi:https://doi.org/10.1002/jcc.540030413.

PF92

P. Pulay and G. Fogarasi. Geometry optimization in redundant internal coordinates. J. Chem. Phys., 96(4):2856–2860, 1992.

RF07

Dmitrij Rappoport and Filipp Furche. Lagrangian approach to molecular vibrational raman intensities using time-dependent hybrid density functional theory. J. Chem. Phys., 126(20):201104, 2007. doi:10.1063/1.2744026.

Reh15

D. R. Rehn. Development of quantum chemical methods for excited-state and response properties. PhD thesis, Heidelberg University, 2015.

RD19

D. R. Rehn and A. Dreuw. Analytic nuclear gradients of the algebraic-diagrammatic construction scheme for the polarization propagator up to third order of perturbation theory. J. Chem. Phys., 150(17):174110, 2019.

RRH+21

D. R. Rehn, Z. Rinkevicius, M. Herbst, M. Li, X. Scheurer, M. Brand, A. L. Dempwolff, I. E. Brumboiu, T. Fransson, A. Dreuw, and P. Norman. Gator: a Python-driven program for spectroscopy simulations using correlated wave functions. WIREs Comput. Mol. Sci., 2021. URL: https://doi.org/10.1002/wcms.1528.

RP16

Y. M. Rhee and J. W. Park. Interpolation for molecular dynamics simulations: from ions in gas phase to proteins in solution. Int. J. Quant. Chem., 116(8):573–577, 2016. URL: https://doi.org/10.1002/qua.25064.

RLV+20

Zilvinas Rinkevicius, Xin Li, Olav Vahtras, Karan Ahmadzadeh, Manuel Brand, Magnus Ringholm, Nanna Holmgaard List, Maximilian Scheurer, Mikael Scott, Andreas Dreuw, and Patrick Norman. Veloxchem: a python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments. WIREs Comput. Mol. Sci., 10(5):e1457, 2020. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1457, doi:10.1002/wcms.1457.

Sch82

J. Schirmer. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A, 26(5):2395–2416, 1982. doi:10.1103/PhysRevA.26.2395.

Sch91

J. Schirmer. Closed-form intermediate representations of many-body propagators and resolvent matrices. Phys. Rev. A, 43(9):4647–4659, 1991. doi:10.1103/PhysRevA.43.4647.

SM10

J. Schirmer and F. Mertins. Review of biorthogonal coupled cluster representations for electronic excitation. Theor. Chem. Acc., 125(3):145–172, 2010. doi:10.1007/s00214-009-0597-x.

ST04

J. Schirmer and A.B. Trofimov. Intermediate state representation approach to physical properties of electronically excited molecules. J. Chem. Phys., 120(24):11449–11464, 2004. doi:10.1063/1.1752875.

Sch11

H. B. Schlegel. Geometry optimization. WIREs Comput. Mol. Sci., 1(5):790–809, 2011.

Sel93

Harrell Sellers. The c2-diis convergence acceleration algorithm. Int. J. Quant. Chem., 45(1):31–41, 1993. doi:https://doi.org/10.1002/qua.560450106.

Sha71

L. J. Sham. Approximations of the Exchange and Correlation Potentials, pages 458–468. Springer US, Boston, MA, 1971. doi:10.1007/978-1-4684-1890-3_36.

SH07

F. Siebert and P. Hildebrandt. Theory of Infrared Absorption and Raman Spectroscopy, chapter 2, pages 11–61. John Wiley and Sons, Ltd, 2007. URL: https://doi.org/10.1002/9783527621347.ch2.

SK84

U. Chandra Singh and Peter A. Kollman. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 5:129–145, 1984. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540050204.

Sny05

J. A. Snyman. Practical mathematical optimization. Springer, 2005.

SDCF94

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 98(45):11623–11627, 1994.

SSF96

Erik. R. Stratmann, Gustavo E. Scuseria, and Michael J Frisch. Achieving linear scaling in exchange-correlation density functional quadratures. Chem. Phys. Lett., 257:213–223, 1996.

Stohr92

J. Stöhr. NEXAFS spectroscopy. Springer Science & Business Media, 1992.

SO12

Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Courier Corporation, 2012.

TPSS03

Jianmin Tao, John P. Perdew, Viktor N. Staroverov, and Gustavo E. Scuseria. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91:146401, Sep 2003.

TA95

O. Treutler and R. Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102:346–354, 1995.

vBL16

J. A. van Bokhoven and C. Laberti. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. John Wiley & Sons, 2016. ISBN 9781118844236. URL: https://doi.org/10.1002/9781118844243.

VFE+19

M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, and S. Coriani. New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states. J. Chem. Theory Comput., 15:3117–3133, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00039.

VKC19

M. L. Vidal, A. I. Krylov, and S. Coriani. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to x-ray photoelectron spectroscopy of ground and excited states. Phys. Chem. Chem. Phys., 22:2693, 2019. URL: https://doi.org/10.1039/C9CP03695D.

VWN80

S H Vosko, L Wilk, and M Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58(8):1200–1211, 1980.

WS16

Lee-Ping Wang and Chenchen Song. Geometry optimization made simple with translation and rotation coordinates. J. Chem. Phys., 144(21):214108, 2016. doi:10.1063/1.4952956.

WJY+17

Ying Wang, Xinsheng Jin, Haoyu S. Yu, Donald G. Truhlar, and Xiao He. Revised m06-l functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc. Natl. Acad. Sci. U.S.A., 114(32):8487–8492, 2017.

WBM+12

L. Weinhardt, A. Benkert, F. Meyer, M. Blum, R. G. Wilks, W. Yang, M. Bär, F. Reinert, and C. Heske. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules. J. Chem. Phys., 136:144311, 2012. URL: https://doi.org/10.1063/1.3702644.

WHWD15

J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys., 142:214104, 2015. doi:https://doi.org/10.1063/1.4921841.

Wen16

Jan Wenzel. Development and Implementation of Theoretical Methods for the Description of Electronically Core-Excited States. PhD thesis, Heidelberg University, 2016.

WDC80

Edgar Bright Wilson, John C. Decius, and Paul C. Cross. Molecular Vibrations. Dover, New York, 1980.

Wor09

Michael Wormit. Development and Application of Reliable Methods for the Calculation of Excited States: From Light-Harvesting Complexes to Medium-Sized Molecules. PhD thesis, Goethe University Frankfurt, 2009.

YTH04

Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchange–correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem. Phys. Lett., 393(1-3):51–57, 2004.

ZT11

Yan Zhao and Donald G. Truhlar. Applications and validations of the minnesota density functionals. Chem. Phys. Lett., 502(1):1 – 13, 2011.