References

References#

[ADJ21]

M. A. Ambroise, A. Dreuw, and F. Jensen. Probing basis set requirements for calculating core ionization and core excitation spectra using correlated wave function methods. J. Chem. Theory Comput., 17:2832, 2021. URL: https://doi.org/10.1021/acs.jctc.1c00042.

[BS71]

P. S. Bagus and H. F. Schaefer. Direct near-Hartree–Fock calculations of the 1s hole states of NO+. J. Chem. Phys., 55:1474, 1971. URL: https://doi.org/10.1063/1.1676248.

[Bak86]

J. Baker. An algorithm for the location of transition states. J. Comput. Chem., 7:385–395, 1986. URL: https://doi.org/10.1002/jcc.540070402.

[Bar04]

Laurence D. Barron. Molecular Light Scattering and Optical Activity. Cambridge University Press, 2004. URL: https://doi.org/10.1017/CBO9780511535468.

[BCCK93]

C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J. Phys. Chem., 97:10269–10280, 1993. URL: https://pubs.acs.org/doi/abs/10.1021/j100142a004.

[Bec88]

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988. URL: https://doi.org/10.1103/PhysRevA.38.3098.

[Bec93]

A. D. Becke. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98:5648–5652, 1993. URL: https://doi.org/10.1063/1.464913.

[BYY17]

U. Bergmann, V. K. Yachandra, and J. Yano. X-Ray Free Electron Lasers: Applications in Materials, Chemistry, and Biology. The Royal Society of Chemistry, 2017. ISBN 978-1-84973-100-3. URL: https://doi.org/10.1039/9781782624097.

[BMK90]

B. H. Besler, K. M. Merz, and P. A. Kollman. Atomic charges derived from semiempirical methods. J. Comput. Chem., 11:431–439, 1990. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540110404.

[Bes12]

N. A. Besley. Equation of motion coupled cluster theory calculations of the x-ray emission spectroscopy of water. Chem. Phys. Lett., 542:42–46, 2012. URL: https://doi.org/10.1016/j.cplett.2012.05.059.

[Bes21]

N. A. Besley. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci, 2021. URL: https://doi.org/10.1002/wcms.1527.

[BA10]

N. A. Besley and F. A. Asmuruf. Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys. Chem. Chem. Phys., 12:12024–12039, 2010. URL: https://doi.org/10.1039/C002207A.

[BW90]

Curt M. Breneman and Kenneth B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J. Comput. Chem., 11:361–373, 1990. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540110311.

[BF22]

I. E. Brumboiu and T. Fransson. Core-hole delocalization for modeling x-ray spectroscopies: a cautionary tale. J. Chem. Phys., 156:214109, 2022. URL: https://doi.org/10.1063/5.0088195.

[Buc67]

A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys., 12:107, 1967. URL: https://doi.org/10.1002/9780470143582.ch2.

[CEH+19]

E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys., 150:154122, 2019. URL: https://doi.org/10.1063/1.5090222.

[CDS80]

L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22:206, 1980. URL: https://doi.org/10.1103/PhysRevA.22.206.

[Cen15]

A. Centrone. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem., 8:101–126, 2015. URL: https://doi.org/10.1146/annurev-anchem-071114-040435.

[CCBK95]

P. Cieplak, W. D. Cornell, C. Bayly, and P. A. Kollman. Application of the multimolecule and multiconformational resp methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J. Comput. Chem., 16:1357–1377, 1995. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540161106.

[CMSY12]

A. J. Cohen, P. Mori-Sánchez, and W. Yang. Challenges for density functional theory. Chem. Rev., 112:289–320, 2012. URL: https://doi.org/10.1021/cr200107z.

[DBTHernandez08]

L. De Boni, C. Toro, and F. E. Hernández. Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules. Opt. Lett., 33:2958, 2008. URL: https://doi.org/10.1364/OL.33.002958.

[DFA02]

P. Deglmann, F. Furche, and R. Ahlrichs. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett., 362:511–518, 2002. URL: https://doi.org/10.1016/S0009-2614(02)01084-9.

[Dir30]

P. A. M. Dirac. Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc, 26:376–385, 1930. URL: https://doi.org/10.1017/S0305004100016108.

[DHG05]

A. Dreuw and M. Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev., 105:4009–4037, 2005. URL: https://doi.org/10.1021/cr0505627.

[DW15]

A. Dreuw and M. Wormit. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci., 5:82–95, 2015. URL: https://doi.org/10.1002/wcms.1206.

[Eck35]

C. Eckart. Some studies concerning rotating axes and polyatomic molecules. Phys. Rev., 47:552–558, 1935. URL: https://link.aps.org/doi/10.1103/PhysRev.47.552.

[EkstromNCAAgren06]

U. Ekström, P. Norman, V. Carravetta, and H. Ågren. Polarization propagator for x-ray spectra. Phys. Rev. Lett., 2006. URL: 10.1103/PhysRevLett.97.143001.

[ES99]

M. Ernzerhof and G. E. Scuseria. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys., 110:5029–5036, 1999. URL: https://doi.org/10.1063/1.478401.

[FHGP92]

J. B. Foresman, M. Head-Gordon, and J. A. Pople. Toward a systematic molecular orbital theory for excited states. J. Phys. Chem., 96:135–149, 1992. URL: https://doi.org/10.1021/j100180a030.

[FPB18]

A. E. A. Fouda, G. I. Purnell, and N. A. Besley. Simulation of ultra-fast dynamics effects in resonant inelastic x-ray scattering of gas-phase water. J. Chem. Theory Comput., 14:2586–2595, 2018. URL: https://doi.org/10.1021/acs.jctc.8b00211.

[FBV+21]

T. Fransson, I. E. Brumboiu, M. L. Vidal, P. Norman, S. Coriani, and A. Dreuw. XABOOM: an x-ray absorption benchmark of organic molecules based on carbon, nitrogen, and oxygen 1s->pi* transitions. J. Chem. Theory Comput., 17:1618, 2021. URL: https://doi.org/10.1021/acs.jctc.0c01082.

[FBN16]

T. Fransson, D. Burdakova, and P. Norman. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. Phys. Chem. Chem. Phys., 18:13591–13603, 2016. URL: https://doi.org/10.1039/C6CP00561F.

[FD19]

T. Fransson and A. Dreuw. Simulating x-ray emission spectroscopy with algebraic diagrammatic construction schemes for the polarization propagator. J. Chem. Theory Comput., 15:546–556, 2019. URL: https://doi.org/10.1021/acs.jctc.8b01046.

[FBR14]

Daniel Friese, Maarten Beerepoot, and Kenneth Ruud. Rotational averaging of multiphoton absorption cross sections. J. Chem. Phys., 141:204103, 2014. URL: https://doi.org/10.1063/1.4901563.

[FA02]

F. Furche and R. Ahlrichs. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 117:7433–7447, 2002. URL: https://doi.org/10.1063/1.1508368.

[Gorling93]

A. Görling. Symmetry in density-functional theory. Phys. Rev. A, 47:2783–2799, 1993. URL: https://link.aps.org/doi/10.1103/PhysRevA.47.2783.

[GLKarlstrom04]

L. Gagliardi, R. Lindh, and G. Karlström. Local properties of quantum chemical systems: the LoProp approach. J. Chem. Phys., 121:4494–4500, 2004. URL: https://doi.org/10.1063/1.1778131.

[GBG08]

A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A, 112:13164–13171, 2008. URL: https://doi.org/10.1021/jp801738f.

[GVZR04]

E. Giorgio, R. Viglione, R. Zanasi, and C. Rosini. \it Ab Initio calculation of optical rotatory dispersion (ORD) curves: A simple and reliable approach to the assignment of the molecular absolute configuration. J. Am. Chem. Soc., 126:12968, 2004. URL: https://doi.org/10.1021/ja046875l.

[GAEK10]

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132:154104, 2010. URL: https://doi.org/10.1063/1.5090222.

[Gut19]

J. Guthmuller. Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods, chapter 17, pages 497–536. John Wiley and Sons, Ltd, 2019. URL: https://doi.org/10.1002/9783527814596.ch17.

[HHGB18]

M. W. D. Hanson-Heine, M. W. George, and N. A. Besley. Basis sets for the calculation of core-electron binding energies. Chem. Phys. Lett., 699:279–285, 2018. URL: https://doi.org/10.1016/j.cplett.2018.03.066.

[Hat06]

C. Hattig. Beyond Hartree–Fock: MP2 and coupled-cluster methods for large systems. Comput. Nanosci., 31:245–278, 2006. URL: https://juser.fz-juelich.de/record/152600/files/FZJ-2014-02217.pdf.

[HGGMW95]

M. Head-Gordon, A. M. Grana, D. Maurice, and C. A. White. Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Phys. Chem., 99:14261, 1995. URL: https://doi.org/10.1021/j100039a012.

[HJ88]

T. Helgaker and P. Jørgensen. Analytical calculation of geometrical derivatives in molecular electronic structure theory. Adv. Quantum Chem., 19:183–245, 1988. URL: https://doi.org/10.1016/S0065-3276(08)60616-4.

[HJO14]

T. Helgaker, P. Jørgensen, and J. Olsen. Molecular electronic-structure theory. John Wiley & Sons, 2014. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119019572.

[HRB+94]

T. Helgaker, K. Ruud, K. L. Bak, P. Jørgensen, and J. Olsen. Vibrational Raman optical-activity calculations using London atomic orbitals. Faraday Discuss., 99:165, 1994. URL: https://doi.org/10.1039/FD9949900165.

[HF20]

M. F. Herbst and T. Fransson. Quantifying the error of the core-valence separation approximation. J. Chem. Phys., 153:054114, 2020. URL: https://doi.org/10.1063/5.0013538.

[HVDO69]

F. Herman, J. P. Van Dyke, and I. B. Ortenburger. Improved statistical exchange approximation for inhomogeneous many-electron systems. Phys. Rev. Lett., 22:807–811, 1969. URL: https://doi.org/10.1103/PhysRevLett.22.807.

[HHG99]

S. Hirata and M. Head-Gordon. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314:291–299, 1999. URL: https://doi.org/10.1016/S0009-2614(99)01149-5.

[HDSD22]

M. Hodecker, A. L. Dempwolff, J. Schirmer, and A. Dreuw. Theoretical analysis and comparison of unitary coupled-cluster and algebraic-diagrammatic construction methods for ionization. J. Chem. Phys., 156:074104, 2022. URL: 10.1063/5.0070967.

[HRDH19]

M. Hodecker, D. R. Rehn, A. Dreuw, and S. Höfener. Similarities and differences of the lagrange formalism and the intermediate state representation in the treatment of molecular properties. J. Chem. Phys., 150:164125, 2019. URL: https://aip.scitation.org/doi/pdf/10.1063/1.5093606.

[HK64]

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, 1964. URL: https://doi.org/10.1103/PhysRev.136.B864.

[HLUMartinez15]

E. G. Hohenstein, N. Luehr, I. S. Ufimtsev, and T. J. Martínez. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys., 142:224103, 2015. URL: https://doi.org/10.1063/1.4921956.

[HBorveSaethreT11]

A. Holme, K. J. Børve, L. J. Sæthre, and T. D. Thomas. Accuracy of calculated chemical shifts in carbon 1s ionization energies from single-reference ab initio methods and density functional theory. J. Chem. Theory Comput., 7:4104, 2011. URL: https://doi.org/10.1021/ct200662e.

[Jen06]

F. Jensen. Introduction to computational chemistry. John Wiley & Sons Ltd., second edition, 2006.

[KKG+15]

M. Kadek, L. Konecny, B. Gao, M. Repisky, and K. Ruud. X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac–Kohn–Sham density matrix. Phys. Chem. Chem. Phys., 17:22566–22570, 2015. URL: https://doi.org/10.1039/C5CP03712C.

[Kie72]

S. Kielich. General molecular theory and electric field effects in isotopic dielectrics. In M. Davies, editor, Specialist Periodical Report, Dielectric and Related Molecular Processes, volume 1, pages 192. Chem. Soc., London, 1972.

[KR16]

C. W. Kim and Y. M. Rhee. Constructing an interpolated potential energy surface of a large molecule: a case study with bacteriochlorophyll a model in the Fenna–Matthews–Olson complex. J. Chem. Theory Comput., 12:5235–5246, 2016. URL: https://doi.org/10.1021/acs.jctc.6b00647.

[KSK+67]

H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr. Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics. J. Chem. Phys., 47:1936, 1967. URL: https://doi.org/10.1063/1.1712221.

[KOJ95]

S. Kirpekar, J. Oddershede, and H. J. Aa. Jensen. Relativistic corrections to molecular dynamic dipole polarizabilities. J. Chem. Phys., 103:2983, 1995. URL: https://doi.org/10.1063/1.470486.

[KS65]

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, 1965. URL: https://link.aps.org/doi/10.1103/PhysRev.140.A1133.

[KLP+16]

J. K. Kowalska, F. A. Lima, C. J. Pollock, J. A. Rees, and S. DeBeer. A practical guide to high-resolution x-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem., 56:803–815, 2016. URL: https://doi.org/10.1002/ijch.201600037.

[LYP88]

C. Lee, W. Yang, and R. G. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, 1988. URL: https://doi.org/10.1103/PhysRevB.37.785.

[Lev05]

S. V. Levchenko. Equation-of-motion coupled-cluster model with single and double substitutions: Theory and applications. PhD thesis, University of Southern California, 2005.

[LWK05]

S. V. Levchenko, T. Wang, and A. I. Krylov. Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions. J. Chem. Phys., 122:224106, 2005. URL: https://doi.org/10.1063/1.1877072.

[Lev79]

M. Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A., 76:6062–6065, 1979. URL: https://doi.org/10.1073/pnas.76.12.606.

[LPL+17]

X. Li, R. M. Parrish, F. Liu, S. I. L. Kokkila Schumacher, and T. J. Martínez. An ab initio exciton model including charge-transfer excited states. J. Chem. Theory Comput., 13:3493–3504, 2017. URL: https://doi.org/10.1021/acs.jctc.7b00171.

[LvKKG12]

K. Lopata, B. E. van Kuiken, M. Khalil, and N. Govind. Linear-response and real-time time-dependent density functional theory studies of core-level near-edge X-ray absorption. J. Chem. Theory Comput., 8:3284–3292, 2012. URL: https://doi.org/10.1021/ct3005613.

[LS61]

P. G. Lykos and H. N. Schmeising. Maximum overlap atomic and molecular orbitals. J. Phys. Chem., 35:288, 1961. URL: https://doi.org/10.1063/1.1731901.

[Low80]

P.-O. Löwdin. Molecular structure calculations. Adv. Quantum Chem., 12:263–316, 1980. URL: https://doi.org/10.1016/S0065-3276(08)60318-4.

[MullerWV00]

T. Müller, K. B. Wiberg, and P. H. Vaccaro. Cavity ring-down polarimetry (CRDP): A new scheme for probing circular birefringence and circular dichroism in the gas phase. J. Phys. Chem. A, 104:5959, 2000. URL: https://doi.org/10.1021/jp000705n.

[Mar03]

Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118(11):4775–4777, 2003. URL: https://doi.org/10.1063/1.1558471.

[Mat92]

R. D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. Courier Corporation, 1992.

[MS96]

F. Mertins and J. Schirmer. Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods. Phys. Rev. A, 53:2140–2152, 1996. URL: https://doi.org/10.1103/PhysRevA.53.2140.

[Nee09]

F. Neese. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev., 253:526–563, 2009. URL: https://doi.org/10.1016/j.ccr.2008.05.014.

[Neal09]

F. Neese et al. Orca. An Ab Initio, DFT and Semiempirical electronic structure package, 2009.

[NBJO01]

P. Norman, D. M. Bishop, H. J. Aa. Jensen, and J. Oddershede. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J. Chem. Phys., 115:10323–10334, 2001. URL: https://doi.org/10.1063/1.1415081.

[ND18]

P. Norman and A. Dreuw. Simulating x-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev., 118:7208–7248, 2018. URL: https://doi.org/10.1021/acs.chemrev.8b00156.

[NRS18]

P. Norman, K. Ruud, and T. Saue. Principles and practices of molecular properties. John Wiley & Sons, Ltd, 2018.

[NL14]

Patrick Norman and Mathieu Linares. On the interplay between chirality and exciton coupling: A DFT calculation of the circular dichroism in π-stacked ethylene. Chirality, 26:483–489, 2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/chir.22331.

[PMK21]

A. C. Paul, Myhre, R. H, and H. Koch. A new and efficient implementation of CC3. J. Chem. Theory Comput., 12:117, 2021. URL: https://doi.org/10.1021/acs.jctc.0c00686.

[PKBmboxSanchezdMeras04]

T. B. Pedersen, H. Koch, L. Boman, and A. M. J. \mbox Sánchez de Merás. Origin invariant calculation of optical rotation without recourse to London orbitals. Chem. Phys. Lett., 393:319, 2004. URL: https://doi.org/10.1016/j.cplett.2004.06.065.

[PBapplerWD14]

F. Plasser, S. A. Bäppler, M. Wormit, and A. Dreuw. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys., 141:024107, 2014. URL: https://doi.org/10.1063/1.4885820.

[PWD14]

F. Plasser, M. Wormit, and A. Dreuw. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys., 141:024106, 2014. URL: https://doi.org/10.1063/1.4885819.

[PKSB79]

J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. Derivative studies in Hartree–Fock and Møller–Plesset theories. Int. J. Quantum Chem., 16:225–241, 1979. URL: https://doi.org/10.1002/qua.560160825.

[Pul80]

P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 73:393–398, 1980. URL: https://doi.org/10.1016/0009-2614(80)80396-4.

[Pul82]

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3:556–560, 1982. URL: https://doi.org/10.1002/jcc.540030413.

[PF92]

P. Pulay and G. Fogarasi. Geometry optimization in redundant internal coordinates. J. Chem. Phys., 96:2856–2860, 1992. URL: https://doi.org/10.1063/1.462844.

[RF07]

D. Rappoport and F. Furche. Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory. J. Chem. Phys., 126:201104, 2007. URL: https://doi.org/10.1063/1.2744026.

[Reh15]

D. R. Rehn. Development of quantum chemical methods for excited-state and response properties. PhD thesis, Heidelberg University, 2015.

[RD19]

D. R. Rehn and A. Dreuw. Analytic nuclear gradients of the algebraic-diagrammatic construction scheme for the polarization propagator up to third order of perturbation theory. J. Chem. Phys., 150(17):174110, 2019. URL: https://doi.org/10.1063/1.5085117.

[RRH+21]

D. R. Rehn, Z. Rinkevicius, M. Herbst, M. Li, X. Scheurer, M. Brand, A. L. Dempwolff, I. E. Brumboiu, T. Fransson, A. Dreuw, and P. Norman. Gator: a Python-driven program for spectroscopy simulations using correlated wave functions. WIREs Comput. Mol. Sci., 2021. URL: https://doi.org/10.1002/wcms.1528.

[RP16]

Y. M. Rhee and J. W. Park. Interpolation for molecular dynamics simulations: from ions in gas phase to proteins in solution. Int. J. Quant. Chem., 116:573–577, 2016. URL: https://doi.org/10.1002/qua.25064.

[RLV+20]

Z. Rinkevicius, X. Li, O. Vahtras, K. Ahmadzadeh, M. Brand, M. Ringholm, N. H. List, M. Scheurer, M. Scott, A. Dreuw, and P. Norman. VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments. WIREs Comput. Mol. Sci., 10:e1457, 2020. URL: https://doi.org/10.1002/wcms.1457.

[RSD+03]

K. Ruud, P. J. Stephens, F. J. Devlin, P. R. Taylor, J. R. Cheeseman, and M. J. Frisch. Coupled-cluster calculations of optical rotation. Chem. Phys. Lett., 373:606, 2003. URL: https://doi.org/10.1016/S0009-2614(03)00667-5.

[RTAAstrand01]

K. Ruud, P. R. Taylor, and \mbox P.-O.. Åstrand. Zero-point vibrational effects on optical rotation. Chem. Phys. Lett., 337:217, 2001. URL: https://doi.org/10.1016/S0009-2614(01)00187-7.

[Sad88]

A. J. Sadlej. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Coll. Czech. Chem. Commun., 53:1995, 1988. URL: https://doi.org/10.1135/cccc19881995.

[Sch82]

J. Schirmer. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A, 26:2395–2416, 1982. URL: https://doi.org/10.1103/PhysRevA.26.2395.

[Sch91]

J. Schirmer. Closed-form intermediate representations of many-body propagators and resolvent matrices. Phys. Rev. A, 43:4647–4659, 1991. URL: https://doi.org/10.1103/PhysRevA.43.4647.

[SM10]

J. Schirmer and F. Mertins. Review of biorthogonal coupled cluster representations for electronic excitation. Theor. Chem. Acc., 125:145–172, 2010. URL: https://link.springer.com/article/10.1007/s00214-009-0597-x.

[ST04]

J. Schirmer and A.B. Trofimov. Intermediate state representation approach to physical properties of electronically excited molecules. J. Chem. Phys., 120:11449–11464, 2004. URL: https://doi.org/10.1063/1.1752875.

[Sel93]

Harrell Sellers. The c2-diis convergence acceleration algorithm. Int. J. Quant. Chem., 45:31–41, 1993. doi:https://doi.org/10.1002/qua.560450106.

[Sha71]

L. J. Sham. Approximations of the Exchange and Correlation Potentials, pages 458–468. Springer US, 1971. URL: https://doi.org/10.1007/978-1-4684-1890-3_36.

[SB09]

I. Shavitt and R. J. Bartlett. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9780511596834.

[SH07]

F. Siebert and P. Hildebrandt. Theory of Infrared Absorption and Raman Spectroscopy, chapter 2, pages 11–61. John Wiley and Sons, Ltd, 2007. URL: https://doi.org/10.1002/9783527621347.ch2.

[SK84]

U. Chandra Singh and Peter A. Kollman. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 5:129–145, 1984. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.540050204.

[Sny05]

J. A. Snyman. Practical mathematical optimization. Springer, 2005.

[SRCN08]

H. Solheim, K. Ruud, S. Coriani, and P. Norman. Complex polarization propagator calculations of magnetic circular dichroism spectra. J. Chem. Phys., 128:094103, 2008. URL: https://doi.org/10.1063/1.2834924.

[SDCF94]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 98(45):11623–11627, 1994. URL: https://doi.org/10.1021/j100096a001.

[SDCF01]

P. J. Stephens, F. J. Devlin, J. R. Cheeseman, and M. J. Frisch. Calculation of optical rotation using density functional theory. J. Phys. Chem. A, 105:5356, 2001. URL: https://doi.org/10.1021/jp0105138.

[SSF96]

E. R. Stratmann, G. E. Scuseria, and M. J. Frisch. Achieving linear scaling in exchange-correlation density functional quadratures. Chem. Phys. Lett., 257:213–223, 1996. URL: https://doi.org/10.1016/0009-2614(96)00600-8.

[Stohr92]

J. Stöhr. NEXAFS spectroscopy. Springer Science & Business Media, 1992.

[SO12]

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Courier Corporation, 2012.

[TPSS03]

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91:146401, 2003. URL: https://doi.org/10.1103/PhysRevLett.91.146401.

[TA95]

O. Treutler and R. Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102:346–354, 1995. URL: https://doi.org/10.1063/1.469408.

[vBL16]

J. A. van Bokhoven and C. Laberti. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. John Wiley & Sons, 2016. ISBN 9781118844236. URL: https://doi.org/10.1002/9781118844243.

[VFE+19]

M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, and S. Coriani. New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states. J. Chem. Theory Comput., 15:3117–3133, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00039.

[VKC19]

M. L. Vidal, A. I. Krylov, and S. Coriani. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to x-ray photoelectron spectroscopy of ground and excited states. Phys. Chem. Chem. Phys., 22:2693, 2019. URL: https://doi.org/10.1039/C9CP03695D.

[VvLvD90]

R. J. Vos, J. H. van Lenthe, and F. B. van Duijneveldt. Convergence to the configuration‐set limit in multireference configuration‐interaction calculations on the he dimer. J. Chem. Phys., 93:643–651, 1990. URL: https://doi.org/10.1063/1.459511.

[VWN80]

S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58:1200–1211, 1980. URL: https://doi.org/10.1139/p80-159.

[Wagniere82a]

Georges Wagniére. Optical activity of higher order in a medium of randomly oriented molecules. J. Chem. Phys., 77:2786, 1982. URL: https://doi.org/10.1063/1.444166.

[Wagniere82b]

Georges Wagniére. The evaluation of three-dimensional rotational averages. J. Chem. Phys., 76:473, 1982. URL: https://doi.org/10.1063/1.442747.

[WS16]

L.-P. Wang and C. Song. Geometry optimization made simple with translation and rotation coordinates. J. Chem. Phys., 144:214108, 2016. URL: https://doi.org/10.1063/1.4952956.

[WJY+17]

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, and X. He. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc. Natl. Acad. Sci. U.S.A., 114:8487–8492, 2017. URL: https://doi.org/10.1073/pnas.1705670114.

[WBM+12]

L. Weinhardt, A. Benkert, F. Meyer, M. Blum, R. G. Wilks, W. Yang, M. Bär, F. Reinert, and C. Heske. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules. J. Chem. Phys., 136:144311, 2012. URL: https://doi.org/10.1063/1.3702644.

[Wen16]

J. Wenzel. Development and Implementation of Theoretical Methods for the Description of Electronically Core-Excited States. PhD thesis, Heidelberg University, 2016.

[WHWD15]

J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys., 142:214104, 2015. URL: https://doi.org/10.1063/1.4921841.

[WDC80]

E. B. Wilson, J. C. Decius, and P. C. Cross. Molecular Vibrations. Dover, New York, 1980.

[WmboxDJr94]

D. E. Woon and T. H. \mbox Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys., 100:2975, 1994. URL: https://doi.org/10.1063/1.466439.

[Wor09]

M. Wormit. Development and Application of Reliable Methods for the Calculation of Excited States: From Light-Harvesting Complexes to Medium-Sized Molecules. PhD thesis, Goethe University Frankfurt, 2009.

[YTH04]

T. Yanai, D. P Tew, and N. C Handy. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 393:51–57, 2004. URL: https://doi.org/10.1016/j.cplett.2004.06.011.

[ZT11]

Y. Zhao and D. G. Truhlar. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett., 502:1–13, 2011. URL: https://doi.org/10.1016/j.cplett.2010.11.060.

[ZH04]

G. Zuber and W. Hug. Rarefied basis sets for the calculation of optical tensors. 1. The importance of gradients on hydrogen atoms for the Raman scattering tensor. J. Phys. Chem. A, 108:2108, 2004. URL: https://doi.org/10.1021/jp031284n.

[LachJS04]

G. Łach, B. Jeziorski, and K. Szalewicz. Radiative corrections to the polarizability of helium. Phys. Rev. Lett., 92:233001, 2004. URL: https://doi.org/10.1103/PhysRevLett.92.233001.

[Tinoco75]

I. Tinoco. Two-photon circular dichroism. J. Chem. Phys., 62:1006, 1975. URL: https://doi.org/10.1063/1.430566.