Two-photon circular dichroism
Two-photon circular dichroism [Tinoco75] arises in chiral systems due to the differential
absorption of two photons, of which at least one is circularly polarized [DBTHernandez08]. In
this sense it can be seen as the nonlinear extension of ECD. The
observable, the anisotropy of the two-photon transition strength,
is proportional to the two-photon rotatory
strength:
(49)\[\begin{eqnarray}
^nR^{\rm TPCD}(\omega) & = & -b_1 [{\mathcal{B}}_1(\omega)]_{0n} - b_2
[{\mathcal{B}}_2(\omega)]_{0n} -b_3 [{\mathcal{B}}_3(\omega)]_{0n}
\end{eqnarray}\]
where \(b_1\), \(b_2\) and \(b_3\) are numbers,
combinations of the analogous polarization and set-up-related coefficients
\(F\), \(G\) and \(H\) given for
two-photon absorption. The molecule-related
parameters \({\mathcal{B}}_1\), \({\mathcal{B}}_2\) and
\({\mathcal{B}}_3\) take the form:
(50)\[\begin{eqnarray}
[{\mathcal{B}}_1 (\omega)]_{0n} & = & \frac{1}{\omega ^3}
{\mathcal{M}}_{\rho \sigma }^{{\rm {p}},0n} (\omega)
{\mathcal{P}}_{\rho \sigma}^{{\rm p}*,0n}(\omega), \\
[{\mathcal{B}}_2 (\omega)] _{0n} & = & \frac{1}{2 \omega ^3}
{{\mathcal{T}}_{\rho \sigma }^{ + ,0n}} (\omega) {\mathcal{P}}_{\rho
\sigma }^{{\rm p}*,0n}(\omega), \\
[{\mathcal{B}}_3 (\omega)] _{0n} & = & \frac{1}{\omega ^3}
{{\mathcal{M}}_{\rho \rho }^{{\rm p},0n}} (\omega)
{\mathcal{P}}_{\sigma \sigma}^{{\rm p}*,0n}(\omega),
\end{eqnarray}\]
and they are therefore appropriate contractions of generalized
two-photon second-rank tensors.
Indeed, these tensors are defined (for the general case of two
photons of different frequency) as follows:
(51)\[\begin{eqnarray}
{\mathcal{P}}_{\alpha \beta}^{{\rm p},0n}(\omega_1,\omega_2) & = & \frac{1}{\hbar} \sum_{m} \Big \{ \frac{(\hat{\mu}^{\rm p}_{\alpha})_{0m} (\hat{\mu}^{\rm p}_{\beta})_{mn} } {\omega_{m0} - \omega_1}
+ \frac{(\hat{\mu}^{\rm p}_{\beta})_{0m} (\hat{\mu}^{\rm
p}_{\alpha})_{mn} } {\omega_{m0} - \omega_2} \Big \}, \\
{\mathcal{M}}_{\alpha \beta }^{{\rm p},0n}(\omega_1,\omega_2) & = & \frac{1}{\hbar} \sum_{m} \Big \{ \frac{(\hat{\mu}^{\rm p}_{\alpha})_{0m} (\hat{m}_{\beta})_{mn} } {\omega_{m0} - \omega_1}
+ \frac{(\hat{m}_{\beta})_{0m} (\hat{\mu}^{\rm p}_{\alpha})_{mn} }
{\omega_{m0} - \omega_2} \Big \}, \\
{\mathcal{T}}_{\alpha \beta }^{+ ,0n}(\omega_1,\omega_2) & = &
\frac{1}{\hbar} \varepsilon_{\beta \rho \sigma} \sum_{m} \Big \{
%\frac{(\hat{T}_{\alpha \rho}^+)_{0m} (\hat{\mu}_{\sigma})_{mn} } {\omega_{m0} -
%\omega_1} + \frac{(\hat{\mu}_{\sigma})_{0m} (\hat{T}_{\alpha \rho}^+)_{mn} }
\frac{(\hat{T}_{\alpha \rho}^+)_{0m} (\hat{\mu}^{\rm p}_{\sigma})_{mn}} {\omega_{m0} -
\omega_1} + \frac{(\hat{\mu}^{\rm p}_{\sigma})_{0m} (\hat{T}_{\alpha \rho}^+)_{mn} }
{\omega_{m0} - \omega_2} \Big \},
\end{eqnarray}\]
where the velocity form of the dipole
operator
\[
\hat{\mu}^{\rm p}_\alpha = - \frac{e}{m_e} \sum_i {\hat
p}_{i\alpha}.
\]
and that of the quadrupole operator (mixed form)
\[
\hat{T}_{\alpha \beta}^+ = - \frac{e}{m_e} \sum_i ({\hat
r}_{i\alpha} {\hat p}_{i\beta} + {\hat
p}_{i\alpha} {\hat r}_{i\beta}).
\]
Within the formalism of response theory, the second-rank
tensors of interest are obtained from the single residues of
appropriate quadratic response functions. The quadratic response functions of
relevance for two-photon circular dichroism are
(52)\[\begin{eqnarray}
\langle \langle \hat{\mu}^{\rm p}_\alpha;\hat{\mu}^{\rm p}_\beta,V^{\omega_n}
\rangle \rangle_{\omega_1,\omega_2} & \Rightarrow & {\mathcal{P}}^{{\rm p},0n}_{\alpha
\beta}(\omega_1,\omega_2), \\
\langle \langle \hat{\mu}^{\rm p}_\alpha;\hat{m}_\beta,V^{\omega_n}
\rangle \rangle_{\omega_1,\omega_2} & \Rightarrow & {\mathcal{M}}^{{\rm p},0n}_{\alpha
\beta}(\omega_1,\omega_2), \\
\varepsilon_{\beta \rho \sigma} \langle \langle
%\hat{T}^+_{\alpha\rho};\hat{\mu}_\sigma,V^{\omega_n} \rangle
\hat{T}^+_{\alpha\rho};\hat{\mu}^{\rm p}_\sigma,V^{\omega_n} \rangle
\rangle_{\omega_1,\omega_2} & \Rightarrow & \mathcal{T}^{+,0n}_{\alpha
\beta}(\omega_1,\omega_2),
\end{eqnarray}\]
where \(V^{\omega_n}\) is an arbitrary operator (corresponding to the excitation vector to the state \(n\)).
Single residues of quadratic response functions are efficiently
and accurately computed nowadays with a number of wave function
models. Nevertheless, DFT has been used almost exclusively
in the few theoretical studies of two-photon circular dichroism that were published.